257 research outputs found

    Persistent scatterer aided facade lattice extraction in single airborne optical oblique images

    Get PDF
    We present a new method to extract patterns of regular facade structures from single optical oblique images. To overcome the missing three-dimensional information we incorporate structural information derived from Persistent Scatter (PS) point cloud data into our method. Single oblique images and PS point clouds have never been combined before and offer promising insights into the compatibility of remotely sensed data of different kinds. Even though the appearance of facades is significantly different, many characteristics of the prominent patterns can be seen in both types of data and can be transferred across the sensor domains. To justify the extraction based on regular facade patterns we show that regular facades appear rather often in typical airborne oblique imagery of urban scenes. The extraction of regular patterns is based on well established tools like cross correlation and is extended by incorporating a module for estimating a window lattice model using a genetic algorithm. Among others the results of our approach can be used to derive a deeper understanding of the emergence of Persistent Scatterers and their fusion with optical imagery. To demonstrate the applicability of the approach we present a concept for data fusion aiming at facade lattices extraction in PS and optical data

    Modeling spacecraft oscillations in hrsc images of mars express

    Get PDF
    Since January 2004 the High Resolution Stereo Camera (HRSC) is mapping planet Mars. The multi-line sensor on board the ESA Mission Mars Express images the Martian surface with a resolution of up to 1 2 m per pixel in three dimensions and in color. As part of the Photogrammetric/Cartographic Working Group of the HRSC Science Team the Institute of Photogrammetry and GeoInformation (IPI) of the Leibniz Universitat Hannover is involved in photogrammetrically processing the HRSC image data. To derive high quality 3D surface models, color orthoimages or other products, the accuracy of the observed position and attitude information in many cases should be improved. This is carried out via a bundle adjustment. In a considerable number of orbits the results of the bundle adjustment are disturbed by high frequency oscillations. This paper describes the impact of the high frequency angular spacecraft movement to the processing results of the last seven years of image acquisition and how the quality of the HRSC data products is significantly improved by modeling these oscillations.DLR/50 QM 090

    Automatic discrimination of farmland types using IKONOS imagery

    Get PDF

    Towards better classification of land cover and land use based on convolutional neural networks

    Get PDF
    Land use and land cover are two important variables in remote sensing. Commonly, the information of land use is stored in geospatial databases. In order to update such databases, we present a new approach to determine the land cover and to classify land use objects using convolutional neural networks (CNN). High-resolution aerial images and derived data such as digital surface models serve as input. An encoder-decoder based CNN is used for land cover classification. We found a composite including the infrared band and height data to outperform RGB images in land cover classification. We also propose a CNN-based methodology for the prediction of land use label from the geospatial databases, where we use masks representing object shape, the RGB images and the pixel-wise class scores of land cover as input. For this task, we developed a two-branch network where the first branch considers the whole area of an image, while the second branch focuses on a smaller relevant area. We evaluated our methods using two sites and achieved an overall accuracy of up to 89.6% and 81.7% for land cover and land use, respectively. We also tested our methods for land cover classification using the Vaihingen dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 90.7%. © Authors 2019

    Marked point processes for the automatic detection of bomb craters in aerial wartime images

    Get PDF
    Many countries were the target of air strikes during the Second World War. The aftermath of such attacks is felt until today, as numerous unexploded bombs or duds still exist in the ground. Typically, such areas are documented in so-called impact maps, which are based on detected bomb craters. This paper proposes a stochastic approach to automatically detect bomb craters in aerial wartime images that were taken during World War II. In this work, one aspect we investigate is the type of object model for the crater: we compare circles with ellipses. The respective models are embedded in the probabilistic framework of marked point processes. By means of stochastic sampling the most likely configuration of objects within the scene is determined. Each configuration is evaluated using an energy function which describes the conformity with a predefined model. High gradient magnitudes along the border of the object are favoured and overlapping objects are penalized. In addition, a term that requires the grey values inside the object to be homogeneous is investigated. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global optimum of the energy function. Afterwards, a probability map is generated from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively, which results in an impact map. Our results, based on 22 aerial wartime images, show the general potential of the method for the automated detection of bomb craters and the subsequent automatic generation of an impact map. © Authors 2019

    Accurate matching and reconstruction of line features from ultra high resolution stereo aerial images

    Get PDF
    In this study, a new reconstruction approach is proposed for the line segments that are nearly-aligned(<= 10 degrees) with the epipolar line. The method manipulates the redundancy inherent in line pair-relations to generate artificial 3D point entities and utilize those entities during the estimation process to improve the height values of the reconstructed line segments. The best point entities for the reconstruction are selected based on a newly proposed weight function. To test the performance of the proposed approach, we selected three test patches over a built up area of the city of Vaihingen-Germany. Based on the results, the proposed approach produced highly promising reconstruction results for the line segments that are nearly-aligned with the epipolar line

    THERMAL IR IMAGING: IMAGE QUALITY AND ORTHOPHOTO GENERATION

    Get PDF
    This paper deals with two aspects of photogrammetric processing of thermal images: image quality and 3D reconstruction quality. The first aspect of the paper relates to the influence of day light on Thermal InfraRed (TIR) images captured by an Unmanned Aerial Vehicle (UAV). Environmental factors such as ambient temperature and lack of sun light affect TIR image quality. We acquire image sequences of the same object during day and night and compare the generated orthophotos according to different metrics like contrast and signal-to-noise ratio (SNR). Our experiments show that performing TIR image acquisition during night time provides a better thermal contrast, regardless of whether we compute contrast over the whole image or over small patches. The second aspect investigated in this work is the potential of using TIR images for photogrammetric tasks such as the automatic generation of Digital Surface Models (DSM) and orthophotos. Due to the low geometrical resolution of a TIR camera and the low image quality in terms of contrast and noise compared to RGB images, the TIR DSM suffers from reconstruction errors and an orthophoto generated using the TIR DSM and TIR images is visibly influenced by those errors. We therefore include measurements of the UAVs positions during image capturing provided by a Global Navigation Satellite System (GNSS) receiver to retrieve position and orientation of TIR and RGB images in the same world coordinate system. To generate an orthophoto from TIR images, they are projected onto the DSM reconstructed from RGB images. This procedure leads to a TIR orthophoto of much higher quality in terms of geometrical correctness

    Supervised detection of bomb craters in historical aerial images using convolutional neural networks

    Get PDF
    The aftermath of the air strikes during World War II is still present today. Numerous bombs dropped by planes did not explode, still exist in the ground and pose a considerable explosion hazard. Tracking down these duds can be tackled by detecting bomb craters. The existence of a dud can be inferred from the existence of a crater. This work proposes a method for the automatic detection of bomb craters in aerial wartime images. First of all, crater candidates are extracted from an image using a blob detector. Based on given crater references, for every candidate it is checked whether it, in fact, represents a crater or not. Candidates from various aerial images are used to train, validate and test Convolutional Neural Networks (CNNs) in the context of a two-class classification problem. A loss function (controlling what the CNNs are learning) is adapted to the given task. The trained CNNs are then used for the classification of crater candidates. Our work focuses on the classification of crater candidates and we investigate if combining data from related domains is beneficial for the classification. We achieve a F1-score of up to 65.4% when classifying crater candidates with a realistic class distribution. © Authors 2019. CC BY 4.0 License

    Investigations on skip-connections with an additional cosine similarity loss for land cover classification

    Get PDF
    Pixel-based land cover classification of aerial images is a standard task in remote sensing, whose goal is to identify the physical material of the earth's surface. Recently, most of the well-performing methods rely on encoder-decoder structure based convolutional neural networks (CNN). In the encoder part, many successive convolution and pooling operations are applied to obtain features at a lower spatial resolution, and in the decoder part these features are up-sampled gradually and layer by layer, in order to make predictions in the original spatial resolution. However, the loss of spatial resolution caused by pooling affects the final classification performance negatively, which is compensated by skip-connections between corresponding features in the encoder and the decoder. The most popular ways to combine features are element-wise addition of feature maps and 1x1 convolution. In this work, we investigate skip-connections. We argue that not every skip-connections are equally important. Therefore, we conducted experiments designed to find out which skip-connections are important. Moreover, we propose a new cosine similarity loss function to utilize the relationship of the features of the pixels belonging to the same category inside one mini-batch, i.e.These features should be close in feature space. Our experiments show that the new cosine similarity loss does help the classification. We evaluated our methods using the Vaihingen and Potsdam dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 91.1% for both test sites. © Authors 2020. All rights reserved
    • …
    corecore